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Abstract 

 

Systems Factorial Technology is a powerful framework for investigating the fundamental 

properties of human information processing such as architecture (i.e., serial or parallel 

processing) and capacity (how processing efficiency is affected by increased workload). The 

Survivor Interaction Contrast (SIC) and the Capacity Coefficient are effective measures in 

determining these underlying properties, based on response-time data. Each of the different 

architectures, under the assumption of independent processing, predicts a specific form of the 

SIC along with some range of capacity. In this study, we explored SIC predictions of discrete-

state (Markov process) and continuous-state (Linear Dynamic) models that allow for certain 

types of cross-channel interaction. The interaction can be facilitatory or inhibitory: one channel 

can either facilitate, or slow down processing in its counterpart. Despite the relative generality of 

these models, the combination of the architecture-oriented plus the capacity oriented analyses 

provide for precise identification of the underlying system. 
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The issue of how we process multiple signals or multiple attributes of a given object is of 

considerable interest to psychologists. Different signals can be processed simultaneously (i.e., in 

a parallel manner) or sequentially (i.e. in a serial manner). Additionally, the signals can be 

processed in independent channels, or alternatively, the channels can somehow communicate 

with each other in such a way that one channel facilitates or inhibits processing in the other 

channel. In this paper we explore response-time (RT) predictions of parallel models that allow 

some degree of cross-channel interactions.  

The following example will serve us throughout this report: suppose that two sources of 

information, say, an auditory and a visual signal, are processed in parallel channels 1 and 2 

respectively. The channels can operate independently from one another, as shown in Figure 1A. 

That is, the activation in channel 1 does not affect the activation level in channel 2, and vice 

versa. Conversely, the channels may interact, as in Figure 1C. The interaction can be positive 

where each channel facilitates the processing of its counterpart causing an overall reduction in 

the time it takes to finish the processing of the incoming information. Hence, nice guys finish 

fast. Alternatively, the channels may inhibit each other’s activity causing a slowdown in 

performance and hence, bad guys finish last. 

In the absence of direct access to the underlying mental processes, researchers have 

traditionally adopted behavioral measures such as mean RTs to assess how different, most often 

simultaneously presented signals are processed (e.g., Donders, 1868; Sternberg, 1969). 

Investigators have generally been concerned with broad information processing issues such as 

whether multiple sources of information are processed in serial or in parallel. However, these 

techniques typically assume independent processing in the respective channels and little research 

has been carried out to investigate the effects of dependencies between processing channels. 
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Figure 1. Schematics of four types of parallel processing models: independent parallel channels 
(panel A), parallel coactive model (panel B), parallel channels with pre-accumulator interaction 
(panel C), and parallel channels with post-accumulator interaction (panel D).  
 

One shortcoming of methodologies traditionally used to assess parallel versus serial 

processing is that mean RTs alone often cannot differentiate between competing models. Serial 

and parallel systems may mimic each other by exhibiting the same pattern of observed response 

times (e.g., Snodgrass & Townsend, 1980; Townsend, 1972, 1990a). For example, Snodgrass 

and Townsend showed how parallel models with limited capacity can easily mimic broad classes 

of serial models. A related issue is a possible trade-off between processing capacity and 

architecture, in which RT measures are consistent with parallel processing while capacity is in 

some sense ‘limited’ and consistent with serial processing (c.f., Townsend & Ashby, 1983). 

Workload capacity, or simply capacity, refers to the system’s performance when the load is 



Nice Guys Finish Fast 5 

varied.1 If the processing rate on one channel remains invariant when another signal is added, 

then the capacity of the system is unlimited. Alternatively, if increasing the work load by 

presenting an additional signal slows down processing in a given channel then capacity is 

limited.  

To overcome the problem of model mimicking, Townsend and colleagues (e.g., 

Schweickert & Townsend, 1989; Townsend, 1984) built on the concept of selective influence 

and mean interaction contrast. These concepts were first brought to the attention of experimental 

psychologists by Saul Sternberg (1969). For an experimental manipulation to ‘selectively 

influence’ a particular process, the manipulation must affect a designated hypothetical process 

and no other process. For example, a sound intensity manipulation is said to selectively influence 

the auditory channel if it affects processing of the auditory signal but has no effect on processing 

of the visual signal (Townsend & Schweickert, 1989; Schweickert & Townsend, 1989; see also 

Townsend, 1990b). The mean interaction contrast computes a double difference of the empirical 

mean RTs across, for example, the 2x2 manipulations of an orthogonal 2x2 factorial design.  

Dzhafarov and colleagues (Dzhafarov, 2003; Kujala & Dzhafarov, 2008) have provided 

advances in the theory and methodology associated with the vital assumption of selective 

influence. When selective influence is abrogated, it has been demonstrated that the standard 

predictions of parallel vs. serial models on the mean interaction contrast statistic fall apart 

(Townsend & Thomas, 1994). 

One challenge accompanying mean interaction contrast analyses was that certain 

architectures combined with certain stopping rules made identical predictions on that statistic.  

                                                 
1 The term capacity is used elsewhere for different purposes. We confine our definition of the term “capacity” to the 
relative change in speed by which the cognitive system processes information as we increase the workload by 
increasing the amount of to-be-processed information.  
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Subsequently to the theoretical results on mean interaction contrast, more robust statistical 

measures that utilize entire RT distributions rather than mean RTs were devised (Townsend & 

Nozawa, 1995; Townsend & Wenger, 2004a). The outcome was a contrast statistic, the survivor 

interaction contrast (SIC) which met the goal of using the entire RT distribution to assess 

architectures and stopping rules. This statistic permits a considerably finer-grained analysis of 

the latter characteristics. 

Based on this new statistic, plus that of a measure of workload capacity, Townsend and 

Nozawa (1995) developed a mathematical theory in combination with a related methodology 

dubbed Systems Factorial Technology. In consequence, they proposed an associated 

experimental design, called the double factorial design, to distinguish between serial and parallel 

processing architectures and within the latter category, independent-parallel from coactive-

parallel models.2 The operative stopping rule is also assayed.  

The SIC statistic (also called an index) will be defined formally in the next section, but 

briefly, parallel and serial models predict unique functional forms for the SIC. For example, 

suppose that a human observer is asked to respond affirmatively if an auditory signal and visual 

signal both appear. To respond correctly, the observer must exhaustively process both 

modalities. Under this regime, if the two signals are processed in parallel, then the predicted 

survivor contrast is negative, as depicted in Figure 2B. If the signals are processed serially, then 

the predicted SIC has a distinctive S-shaped curve that begins at zero and then becomes negative, 

crosses the abscissa, and then becomes positive before returning to zero. The SIC signatures for 

serial models are presented elsewhere (Townsend & Nozawa, 1995). In this paper we examined 

                                                 
2 In a coactive model, activation from multiple channels is summed and compared to a single threshold prior to 
decision. In the case of the Poisson coactive model, for example, counts from two or more channels can accumulate 
in a common buffer, in which the overall amount of counts is subsequently compared to the decision criterion. 
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the effects that different levels of cross-channel interaction have on the SIC signature of parallel 

models.  [Figure 1 here] 

If the channels in a parallel system interact with each other then the experimental 

manipulation targeted on one channel will have an effect on the other, violating the assumption 

of selective influence. Unlike ‘pure’ parallel or serial models, the channels are no longer 

independent; activation from one channel, such as the auditory channel, may be sent to the other 

channel and vice versa. The outcome of this cross-channel communication may be facilitatory or 

inhibitory depending on the nature of the interaction. In the current study we examined several 

classes of formal and computational parallel-interactive models, and explored their predictions 

with respect to the SIC and workload capacity, beyond the cases where selective influence holds. 

 The SIC test is traditionally employed within the context of a factorial design. We begin 

by outlining the paradigm often referred to as “the double factorial design.” We then explain the 

basic methodology for calculating the SIC and discuss the predictions for parallel independent 

models. Next, we describe two types of models, discrete state and continuous state, that are used 

to explore early cross-channel interactions (pre-accumulator) and late interactions (post-

accumulator).3 We then report simulation results of these models in terms of the SIC and 

workload capacity patterns they predict. Finally, we discuss the similarities and differences in the 

predicted SICs due to changes in the locus in which interactions occur. 

 

The Double Factorial Design 

 The double factorial design combines two levels of manipulation. The first manipulation 

is concerned with the presence versus absence of target items. For instance, in a target detection 

                                                 
3 Cross-channel interaction may be early on in the process, representing perhaps a dependence of the activation in 
one channel on the input from the other. Or else, the interaction may occur at a later stage, for example if the 
activation in a channel depends on the activation in the other. 
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task with auditory and visual targets, four types of trials exist: double target trials, in which an 

auditory signal and a visual signal are presented at the same time, visual target alone, auditory 

target alone, and finally target absent trials. This manipulation of presence versus absence is used 

to create double versus single target conditions, which are necessary for the calculations of our 

capacity measure, as we shall see in later sections.4 A second manipulation of salience performed 

on the subset of double target trials yields four sub-types of trials: HH trials, where both the 

visual and the auditory target appear in their highly salient form (for example, a loud beep sound 

and a bright dot of light), HL and LH trials, where one target is highly salient whereas the 

salience level of the other target is low (e.g., loud sound and a dim dot, or a bright dot and weak 

sound) , and LL trials where both targets have low salience.  

The survivor function for each of the factorial conditions (HH, LH, HL, and LL) can then 

be estimated from response times to yield the SIC. The survivor function is the complement of 

the cumulative distribution function (CDF), such that )(1)( tFtS −= . While the cumulative 

distribution function, )(tF , tells us the probability that processing of a given stimulus is finished 

before or at time t, the survivor function marks the probability that processing has not yet 

terminated. The SIC is computed by taking a double difference of survivor functions from the 

different factorial conditions created by the high vs. low salience manipulation, 

)](S)([S)](S)([S)SIC( HHHLLHLL ttttt −−−= .  

The SIC predictions for two independent parallel models are presented in panels A and B 

of Figure 2 (for formal proofs and predictions for serial models, we refer the reader to Townsend 

& Nozawa, 1995). Townsend and Nozawa also derived predictions for a special case of parallel 

                                                 
4 Target-absent trials are not used for the calculation of our capacity measure, yet are essential in this paradigm. 
Without them, all displays contain at least one target item, so participants would be able to correctly respond “yes, 
target-present” without actually processing the stimuli. 
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processing, referred to as coactive processing, in which information from two channels 

converges to satisfy a single criterion. A schematic of such a model is presented in Figure 1B, 

and the SIC prediction is plotted in Figure 2C. Under some assumptions, which we discuss later, 

the coactive model is in fact a special case of an interactive-facilitatory model.  [Figure 2 here] 
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Figure 2. Survivor functions (left column) and SIC predictions (right column) for different 
processing models: parallel first-terminating (panel A), parallel exhaustive (panel B), and 
coactive (panel C). To calculate the SIC, one first estimates the survivor functions for each of the 
four factorial conditions (HH, HL, LH, and LL), and then calculates the double difference: 

)]()([)]()([)( tStStStStSIC HHHLLHLL −−−= . The subscripts refer to the salience of the signals, 
where H is high and L is low. So, for example, HH means that both signals are highly salient. 
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We systematically varied the degree of cross-channel interaction within several classes of 

simulated models, and tested how it affects the form of the SIC. Varying the level of interaction 

makes parallel models flexible in terms of their predictions. In particular, it allows the model to 

mimic a range of architectures from independent-parallel (when the level of interaction is 

negligible or effectively null) to coactive. Consequently, parallel interactive models can predict a 

range of SIC signatures. Nonetheless, we found that despite the inherent flexibility of interactive-

parallel models, their SIC functions do in fact span a finite range, thus allowing the falsification 

of certain classes of models based on observed data. For example, a facilitatory AND model (a 

system with two parallel channels which facilitate each other and stops as soon as the slower of 

the two finishes processing) can produce a range of SIC functions from completely negative to 

mostly positive. An entirely positive SIC, often observed in some of our studies (e.g., Eidels & 

Townsend, 2009; Eidels, Townsend, & Algom, 2010; Townsend & Nozawa, 1995), would allow 

one to reject this broad class of parallel models. 

 We explored, in this paper, both discrete-state and continuous-state models of parallel 

processing. For the former we used Markov-process matrix methods whereas for the latter we 

used Monte-Carlo simulations. We focused on two varieties of interaction, one at the input stage 

(pre-accumulator) and one during the accumulation stage. For each model, we assumed that 

processing of two or more sources of information is carried out simultaneously in parallel 

channels. We allowed either first-termination (i.e., terminate processing when either channel 1 or 

2 finishes; OR rule) or exhaustive processing (i.e., terminate processing when both 1 and 2 

channels finish; AND rule). Furthermore, in all models, we manipulated the level of excitatory 

and inhibitory cross-channel interactions. However, the exact manner by which one channel 

affects the other differed across the two varieties.  
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Next, we present the models in greater detail and explain how the cross-channel 

interaction is realized in the discrete and continuous classes of models. The interaction can be 

facilitatory, with one channel ‘helping’ the other, or inhibitory, where one channel slows down 

the processing of its counterpart. Therefore, for each class of models there exist four cases of 

interest: facilitatory interaction associated with an OR rule, facilitatory with an AND rule, 

inhibitory OR, and inhibitory AND. After describing the models we present the simulation 

results showing the SIC functions for different levels of interactions for each of these four cases. 

 

‘Early’ and ‘Late’ Cross-Channel Interactions 

Each channel can interact with its counterpart in different loci. In Figure 1C and 1D we 

illustrate two possible loci of interaction, which we have explored in detail. In Figure1C, ‘early’ 

interaction, the interaction occurs before the accumulator in both channels. We refer to these 

models as “pre-accumulator interaction” models. This type of interaction is a model for 

dependent inputs. In facilitatory models, higher input in one channel leads to more activation 

feeding into the accumulator of the other channel. In inhibitory models the higher input in one 

channel leads to lower input to the accumulator of the other channel.   

In Figure 1D, ‘late’ interaction, accumulated activation on one channel is added to- (in 

case of facilitation) or subtracted from- (in case of inhibition) the input of the other channel. In 

this type of model, it is the total activation, not just the input level of one channel that affects the 

other. We refer to these models as “post-accumulator interaction” models. Naturally, in 

facilitatory models higher total activation on one channel leads to higher input level in the other 

channel’s accumulator, whereas in inhibitory models higher total activation leads to lower input. 
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Discrete- and Continuous-State Models 

The pre- and post-accumulator types of interaction were realized in this study within two 

types of models: A discrete-state model, based on a Markov process, and a continuous state 

model, which is based on a stochastic linear dynamic system. 

Discrete State Models 

We modeled discrete-state parallel-interactive processes with two parallel counting 

processes or channels. The input to each channel was a stream of counts that arrived randomly, 

but independently, at a constant rate until the channel was finished.  The rate was determined by 

the salience level of an assumed stimulus processed by that channel (salient stimulus = high rate, 

faint stimulus = low rate). The specific parameter values used for this paper are reported in 

Appendix A.  Each channel in the model accumulates counts until a prescribed criterion is 

reached. Channels could facilitate or inhibit each other by sharing positive or negative counts, 

respectively. For models of pre-accumulator interaction, only the most recent count could be 

shared. For models of post-accumulator interaction, any amount of the previously accumulated 

counts could be shared.  In the AND case (“detect signal 1 and 2”), overall processing in the 

system ceased only when both channels reach their respective criterion. In the OR case, overall 

processing stopped once either channel 1 or 2 reaches its criterion. The following examples 

illustrate the process of counting with facilitatory versus inhibitory channel interaction. In the 

examples, we present the activation in the model as if it changes over discrete time steps. 

However, the models presented in this paper are in fact continuous-time processes, so ‘steps’ are 

only used here for the purpose of explication. 

Consider first a facilitatory model, where the probability of cross-channel interaction is 1 

in both directions -- from channel 1 to 2, and from channel 2 to 1. This means that activation is 
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fully shared between channels, but the exact manner differs across pre- and post-accumulation 

models. Both model varieties start with [0, 0]. Suppose that on the first step, a count occurs on 

one channel. In the pre-accumulator models with probability 1 of sharing, an incoming count on 

a given channel is also added to the other channel, setting the state of the system to [1, 1]. On the 

second step, a count occurs on the second channel but not on the first. Nonetheless, due to the 

interaction, the same count is also sent from the second to the first channel, and the updated state 

would be [2, 2]. Notice that in this extreme case the channels are perfectly correlated and will 

terminate processing at the same time (as long as their criterion values are identical). In the post-

accumulator models, all accumulated counts are shared. If the state of the model is [2, 2], then all 

counts are shared from both channels to the other, increasing the state to [4, 4]. 

Alternatively, consider an inhibitory model where the probability of channels’ interaction 

is again symmetric and equal to 1. Suppose that the model state is [2, 2] and a count is added to 

channel 1. With cross-channel inhibition, activation added to one channel is subtracted from the 

other in one of two ways, depending on the locus on interaction: In the pre-accumulator models 

the added count to channel 1 is simultaneously subtracted from channel 2, so the new state would 

be [3, 1]. In the post-accumulator model, in contrast, a count would be subtracted from channel 2 

due to sharing from channel 1 at a rate proportional to p2 (since there are two counts in channel 

1) and likewise for decreases in channel 1 due to sharing from channel 2.  By assumption, a 

channel cannot have fewer than zero counts. For instance, if the model starts at [0, 0] and a count 

is added to channel 1, a count would not be subtracted from channel 2 even if the probability of 

interaction is 1=p . In that case, the updated state of the model becomes [1, 0]. 

A formal description of the discrete-state models is provided in Appendix A. We 

investigated the RT predictions, and in particular the SIC predictions of these models by carrying 
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out simulations in some cases and numerical approximations to the CDFs in other cases. We 

tested both facilitatory and inhibitory models with varying levels of cross-channel interaction 

starting with completely independent channels, where the probability of interaction was null, 

p=0, all the way through p=1. In Appendix A we present the general model, but for brevity 

report in the main text results in which the sharing between channels is symmetric and the 

criteria are equal. Results from a wider range of parameters values are summarized in Appendix 

C, and in general were qualitatively similar to the canonical SIC forms which we report below. 

Continuous State Models 

We modeled continuous-state parallel-interactive processes with linear dynamic systems.  

Similar to the discrete-state models, we specified a state space describing the accumulation of 

perceptual or cognitive activation in a channel at each point in time. The process of accumulation 

began when input entered the system from the environment or from another internal system.  

Again the salience level determined the magnitude of the input. To make the process stochastic 

we added independent white noise processes to the input.  Pre-accumulator interactions were 

modeled by adding a multiple of the input of each channel to the other. Post-accumulator 

interaction was modeled by adding a multiple of the total activation of each channel to the other.  

The level of interaction was determined by the magnitude of the multiplier in either case.  In 

facilitatory models the multiplier was positive, while in inhibitory models the multiplier was 

negative.  

We simulated the models with varying levels of cross-channel interaction starting with 

completely independent channels and gradually increasing the extent of the interaction. To 

obtain the necessary estimate of the CDF in each condition, we simulated a series of trials with 

the model to get a sample of predicted RTs. From those estimated CDFs we computed and 
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plotted the SIC. For simplicity, the interaction parameters were set to be equal across channels. 

For a formal explication of the continuous-state models see Appendix B. 

 

Results and Discussion 

Simulation results for the models presented above are summarized in Figure 3. The 

qualitative SIC predictions of the discrete-state and continuous-state models were the same. To 

avoid redundancy, we only included figures of the former. The SIC patterns predicted by pre- 

and post-accumulator models were often the same but differed on some aspects. Therefore we 

included figures of both, and compare their results shortly. These figures are based on our 

models’ simulations, not on analytic proofs. 

The SIC functions for four types of pre-accumulator model (facilitatory AND, facilitatory 

OR, inhibitory AND, inhibitory OR) are presented in the first column of Figure 3. The 

corresponding SIC functions for the post-accumulator models are shown in the second column of 

Figure 3. The solid black line in each panel corresponds to the SIC function of the parallel 

independent model. A lighter shade represents more interaction, with the lightest line 

representing the SIC function with the highest level of interaction. While the Markov process 

models have a clear maximum level of interaction ( 1=p ), the linear dynamic models are only 

bounded by the constraint on facilitation that the system remains stable and the constraint on 

inhibition that the system should complete processing in a finite time. For the parameters used in 

the simulation of the post-accumulator linear-dynamic models, this corresponded to cross-

channel interaction values of 8.4aa 2112 ±== , where 12a  determines the amount of cross channel 

information received by channel 1 from channel 2, and vice versa for 21a  (see Appendix B for 

details). 
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A cursory comparison between the first and second columns of Figure 3 reveals that the 

patterns of results predicted by pre- and post-accumulator model are qualitatively quite similar. 

Next, we survey the results of each class in more detail and point out discrepancies, when exist. 

The order of discussion coarsely follows the difficulty for interpretation, from easy to more 

difficult, and not necessarily the order of presentation in Figure 3. 

Pre-Accumulator Models 

For both facilitatory models (AND, OR; top two rows of Figure 3), increasing the 

probability of interaction resulted in faster completion times. The corresponding curves shifted 

farther to the left as the level of facilitation increases (as the shade lightens). For the inhibitory 

model (bottom panels), increased interaction resulted in slower processing, and the 

corresponding SIC functions shifted to the right.   

Figure 3A shows the SIC functions for a facilitatory exhaustive (AND) model where two 

parallel channels facilitated each other and stopped as soon as both channels finished processing. 

For the independent parallel-exhaustive models (i.e., 0=p ), the SIC function was entirely 

negative, like Figure 2A, and commensurate with Townsend and Nozawa’s (1995) Proposition 2. 

As the probability of cross-channel interaction increased, the early part of the survivor contrast 

function (i.e., for small t ) remained negative, but the later part became more and more positive 

until, for p close to or equal to 1, the size of the positive area exceeded that of the early negative 

area.  It is important to note that the facilitatory exhaustive model failed to produce a completely 

positive SIC function regardless of the amount of interaction. In fact, for the highest level of 

interaction the curve took the form of the SIC function predicted by a coactive model presented 

in Figure 2C (see Townsend & Nozawa’s Proposition 5). This result is predictable because 

perfectly correlated channels (cross-channel interactions of 1=p  in the discret-state model) 
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mean that all activation from one channel is sent to the other channel and vice versa. Hence, 

termination of processing on each channel occurred when the sum of counts from the two 

channels exceeds the criterion value, exactly as in a coactive (channel-summation) model.   

Figure 3B shows the SIC function for a facilitatory first terminating (OR) model. For 

0=p  (i.e., no cross channel interaction) the SIC remained entirely positive for all t, as predicted 

by an independent parallel first-terminating model (Figure 2A; see also Townsend and Nozawa, 

1995, Proposition 1). As interaction increased, the early part of the function turned negative, but 

the total negative area was smaller than the positive area for all levels of interaction. At the 

maximum value, the SIC was mostly positive with an early negative blip, again the signature of a 

coactive model (cf. Figure 2C).  

Regardless of the termination rule then, perfect sharing of counts between channels is 

structurally identical to coactive processing. The SIC signatures of the two facilitatory models 

are therefore bounded (from opposite directions) by the SIC signature of the coactive model.  

This observation is of extreme importance as it allows the researcher to reject certain classes of 

models. The facilitatory-first-terminating (OR) model, for example, predicted a range of SIC 

functions that span a finite range from total positivity to mostly positive with an early negative 

region (Figure 3B). If an entirely negative SIC function is observed in experimental data, 

facilitatory first-terminating models can be safely rejected.   

Next, consider the forms of the SIC functions produced by parallel-inhibitory models. For 

the OR case (Figure 3D), the SIC functions were always positive regardless of the probability of 

cross-channel interaction. Increasing the level of interaction resulted in an overall slowdown of 

processing, as demonstrated by the horizontal stretching of the SIC function for high levels of 

interaction (to the extent that the SIC for the highest level had to be truncated in the figure).  
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However, the qualitative form of the SIC function remained unaffected. Any negativity in the 

observed SIC rules out inhibitory first-terminating models.   

The SIC results of the inhibitory exhaustive (AND) model, in Figure 3C, pose a more 

serious challenge for interpretation. The SIC was entirely negative for independent processes, 

while the right tail gradually became positive as the level of interaction increased. For large 

amounts of interaction, the positive area exceeded the negative area, and with the maximum 

amount of interaction the function was almost entirely positive.  

Post-Accumulator Models and Comparisons with Predictions of Pre-Accumulator Model 

Beginning with the inhibitory OR case (Figure 3D), the SIC predictions for the pre- and 

post-accumulator models were qualitatively similar. With increased interaction, the SIC function 

shifted to the right but always remained positive. Thus, any observed negativity in an empirical 

SIC function immediately rules out inhibitory first-terminating models, regardless of the level, 

and locus of interaction. 

Next, consider the facilitatory OR case in Figure 3B. Once again, the qualitative 

predictions of pre- and post-accumulator models were similar. In the absence of cross-channel 

interaction, the SIC function was entirely positive. With increased interaction it gradually shifted 

to the left and was increasingly negative for early processing times. Even for the highest levels of 

interaction, though, it was mostly positive. Therefore, observing a completely negative SIC 

function, or even mostly negative function, excludes the facilitatory first-terminating model, 

again regardless of the locus of interaction. 

For the facilitatory AND case (Figure 3A), the SIC functions predicted by the pre- and 

post-accumulator models were slightly different. The pre-accumulator model generated a range 

of SIC functions, from completely negative when processing in the two channels occurs 
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independently, to mostly positive with an early negative blip when interaction was maximal. The 

post-accumulator model produced SIC functions which were negative across all tested parameter 

values, and thus comprised only a subset of the pre-accumulator predictions. Observing a 

completely positive SIC function rules out the facilitatory exhaustive model regardless of its 

class.  

Finally, the predictions of the inhibitory AND model (Figure 3C) were somewhat similar 

across both classes. The SIC function was completely negative for independent processing, and 

its right tail gradually became positive as we increased the level of interaction. For the pre-

accumulator model, the function was almost totally positive for the highest possible level of 

interaction. This model poses a challenge for interpretation as it predicted a wide range of 

function forms from totally negative to nearly totally positive. To overcome this problem and in 

general to increase one’s ability to discriminate between models based on observed data, one 

needs to execute the second branch of systems factorial technology -- estimating the capacity 

coefficient, which we shall discuss shortly.  

Summarizing the results, most models predicted a finite range of SIC forms. Observing 

an empirical SIC function that does not fall within the range predicted by a particular model 

allows the investigators to reject that model. Nonetheless, certain models had overlapping 

predictions of the SIC function.  For concreteness, suppose that you observe an empirical SIC 

function which is completely positive for all time t. One can immediately rule out the facilitatory 

exhaustive model (Figure 3A), as none of the SIC curves constantly stay above the abscissa, 

regardless of the level and locus of the interaction. However, the facilitatory first-terminating 

model (Figure 3B; for 0=p , which is an independent model), the inhibitory exhaustive model 

(figure 3C; for 1=p ) and the inhibitory first-terminating model (figure 3D; for all p  values 
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including 0=p  which is an independent model) could predict a completely positive SIC 

function. What methodology can be utilized to distinguish between them? At this point, we shall 

discuss how workload capacity can help distinguishing between inhibitory, facilitatory, and 

independent parallel models.  [Figure 3 here] 
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Figure 3.  Simulated SIC results from four types of pre-accumulator parallel interactive models 
(first column) and post-accumulator models (second column):  Facilitatory AND (panel A), 
Facilitatory OR (panel B), Inhibitory AND (panel C), and Inhibitory OR (panel D).  The third 
column shows the predicted )(tC  values, which are similar for pre- and post-accumulator 
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interaction models. Within each panel, the shading of the different lines represents the degree of 
interaction: the thick dark line represents the independent model and as the probability of 
interaction increases, the lines become lighter. The probabilities shown here are 0, 0.25, 0.5, 0.75 
and 1. 

  

Distinguishing between Facilitatory and Inhibitory Models that have Similar SIC Forms 

The Capacity Coefficient. Inhibitory, facilitatory, and independent-channels models make 

different predictions with regard to a measure of processing efficiency that gauges workload 

capacity. By workload capacity, we refer to the processing efficiency of the system as we 

increase the load of information by, say, increasing the number of the to-be-processed targets. 

Townsend and Nozawa (1995) proposed a measure of workload capacity -- the capacity 

coefficient.  For OR processes, the appropriate version is computed as the ratio between the 

integrated hazard function of the double target condition (i.e., two targets presented 

simultaneously) and the sum of the integrated hazard functions of the single target conditions: 

)(H)(H
)(H)(
21

12
OR tt

ttC
+

= . 

If the survivor function is the complement of the cumulative distribution function 

)(1)( tFtS −= , and the hazard function is the probability density function over the survivor 

function, 
)(
)()(

tS
tfth = , then the integrated hazard function, )(tH is the integral of the hazard 

function from zero to t. The subscripts OR indicate that this index is calculated for the OR task.  

Recently, Townsend & Wenger (2004b) developed a comparable capacity index for the 

AND task, 
)(K

)(K)(K)(
12

21
AND t

tttC +
= , where )K(t  is analogous to the integrated hazard function, 

H(t). If we let k(t) (the reverse hazard function, e.g., Chechile, 2010) be equal to the density over 

the distribution function, 
)(
)()(

tF
tftk = , then )K(t  is defined as the integral of )(tk  from zero to t . 
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The interpretation of the two capacity indices, )(OR tC  and )(AND tC , is comparable. When 

applied to OR processing, )(OR tC  values of 1 imply that the system has an unlimited capacity, 

such that processing in a given channel is not affected by the increase in workload due to the 

increase in the number of targets; i.e., a given channel has the same processing rate whether a 

target is presented to the other channel or not. Likewise, when applied to AND processing 

1)(AND =tC  implies unlimited capacity (although when applying )(OR tC  to unlimited capacity 

model with AND processing, 1)(OR <tC  due to the increased latency associated with processing 

all inputs in the redundant target display).   

)(OR tC  values that are below 1 in OR processing situations, suggest that capacity is 

limited, such that increasing the processing load (e.g., by increasing the number of targets on the 

display) takes a toll on the performance of each channel.  1)(AND <tC implies limited capacity 

when applied to either AND or OR processing. 

 Finally, if 1)( >tC (for either index) then the system is said to have super-capacity; 

processing efficiency of individual channels actually increases as we increase the workload. 

The capacity coefficient gauges the processing efficiency of the system relative to the 

performance expected from an unlimited capacity independent parallel model. At the same time 

it indirectly provides information about architecture and channel (in)dependence. For example, 

the prediction of a parallel-independent model is, by definition, 1)( =tC , whereas a standard 

serial model roughly predicts 5.)( =tC . The prediction of a parallel model with positive cross-

channel interactions is 1)( >tC , as is the prediction of a coactive model.5 Very strong inhibitory 

                                                 
5 Townsend & Wenger (2004b) simulated linear dynamic parallel-interactive models and showed that positive 
channel interactions have a facilitatory effect on workload capacity (C(t)>1) and that negative interactions have an 
inhibitory effect of capacity (C(t)<1). An unlimited capacity parallel model without cross-channel interactions 
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cross-channel interactions, in either parallel or serial mode of processing, may lead to severely 

limited capacity, such that 5.)( <tC . The more inhibition there is between channels, the slower 

each channel is relative to its performance in isolation, and this slowdown is reflected in smaller 

values of the capacity coefficient. Conversely, with more cross-channel facilitation, each channel 

is faster than it would be in isolation, and the coefficient values increase. Thus, the capacity 

coefficient provides an indication of the degree of facilitation or inhibition. 

Independent models, with different combinations of architecture (serial, parallel) and 

stopping rule (exhaustive, first terminating) predict unique forms of SIC functions (cf. Figure 2). 

When different models predict similar survivor contrasts at least one of the models must have 

high levels of cross-channel interactions. Examining the SIC and the capacity coefficient in 

tandem provides (in some cases) a decisive test for the architecture and possible dependencies 

between the processing channels.  

In the third column of Figure 3 we present, for each of the four models, the predictions of 

the capacity coefficient for various degrees of cross-channel interaction (based on simulations of 

the pre-accumulator discrete-state model). Like the SIC plots on the same figure, the black line 

in each panel represents the function for an independent model and as the probability of 

interaction increases, the shade gets lighter. Under the assumption of parsimony, we can assume 

that the same underlying processing system generates the data used for estimating )(tSIC  and 

)(tC .6 

                                                                                                                                                             
( 02112 == aa ) produces capacity coefficient values of 1. Notably, coactive models in which activation from each 
channels is summed together produces extremely super capacity values, higher than those observed in parallel 
models with positive channel interaction. 
6 That is, architecture does not change when we estimate these two statistics in a single experiment. For example, if 
two parallel channels operate independently, then they should be independent whether we use the data to estimate 
the capacity coefficient or whether we use just a subset of this data to estimate the SIC. Within a given experiment, a 
processing system of some kind cannot exhibit the signatures of independence on one measure (say, SIC(t) function 
which is all positive or all negative) and an interaction signature on the other (say, C(t) values much greater than, or 
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With this assumption in mind, we provide the reader with a decision tree (Figure 4) based 

on our simulated results. Given the observed )SIC(t  and )(tC  patterns, one can use this decision 

tree to decisively rule out certain models that fail to accommodate the observed pattern. The 

decision tree is restricted to the models tested in this study. Other models may exist that can 

exhibit similar )SIC(t  and )(tC patterns. Therefore, the decision tree is useful for rejecting 

unsuitable models, but not for determining what is unequivocally the correct model. 

When estimating )SIC(t  and )(tC  from empirical data, the estimates may be influenced 

by noise. Bootstrapped confidence intervals (Higgins, 2004, pp. 257—258) are an effective way 

of determining the uncertainty over shape and location of the functions. It is also possible to test 

whether the positive or negative parts of the )SIC(t  are statistically significant using a 

generalization of the Kolmogorov-Smirnov test (Houpt & Townsend, 2010). 

Choosing the Appropriate C(t) Formula. Given two different formulas, one for )(OR tC  

and another for )(AND tC , how do we know which one to use for our data? In some cases we 

know what the stopping rule should be and the appropriate measure is clear. For instance, when 

exhaustive processing is called for by the instructions of a detection task, a failure to comply 

with the instructions will lead to noticeable proportion of errors. The participants must use the 

appropriate rule (AND) in order to perform accurately, and the appropriate capacity measure 

should be )(AND tC .  

If we do not know the stopping rule in advance, the form of the SIC can be helpful in 

determining the appropriate capacity coefficient. Observing a completely negative SIC for all 

time t  rules out the two candidate OR models (left branch of Figure 4; compare with SIC 

                                                                                                                                                             
much smaller than 1). In fact, the actual level of interaction (p value, in case of the discrete activation model) is said 
to be invariant across the two measures. 
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predictions of OR models in Figure 3); in this case, the appropriate capacity coefficient would be 

)(AND tC . )(AND tC  values greater than 1 rule out inhibitory and independent models, )(AND tC  

values less than 1 rule out facilitatory and independent models, and 1)(AND =tC  is only predicted 

by independent models. 

When the SIC does not provide enough evidence to determine the stopping rule then it is 

best to choose the most informative version of the capacity coefficient.  For example, when the 

SIC is positive for all t  (middle branch of Figure 4), then we cannot determine the stopping rule.  

Both inhibitory AND and OR models predict 1)(OR <tC , while facilitatory OR models predict 

1)(OR >tC  but not necessarily 1)(AND >tC . Thus )(OR tC  is more informative in this case.7  

Other SIC forms are possible, but they are not predicted by the type of models 

investigated here. For example, an SIC(t)=0 for all t  is predicted by serial processing models that 

stop after the first channel is completed (Serial-OR). In some cases, when there is strong 

asymmetry between channel rates and level of sharing, the currently investigated interactive 

parallel models can predict other SIC forms as well.  These cases are discussed in Appendix C. 

In conclusion, models that predict the same form of survivor contrast may be 

distinguished by observing their )(tC  predictions (and vice versa). Within the restricted universe 

of parallel-interactive models tested here, and given experimentally observed SIC and the 

capacity coefficient functions in tandem, one can identify a unique candidate processing model 

                                                 
7 In some cases both )(AND tC  and )(OR tC  are informative such as when the SIC function is negative for early 
times and positive for late times (Figure 4, right branch).  In this case, one may need to calculate both indices. If 

1)(AND >tC  then inhibitory AND models can be rejected, leaving both facilitatory models.  If, additionally, 

1)(OR <tC  then facilitatory OR models are rejected in favor of facilitatory AND models. 
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(end boxes of each of the paths in Figure 4). There are only two non-unique cases, but even in 

these paths the decision tree ends in two candidate models instead of many.8  [Figure 4 here] 

 

Figure 4. A decision tree for parallel-interactive model diagnosis. Given both empirical survivor 
interaction contrast [SIC(t)] and capacity coefficient [C(t)] estimates, one can analyze the 
diagram from top to bottom to rule out models that fail to predict the observed functions. The 
decision tree accommodates the models tested in this paper. * A coactive model is a candidate. 

 

 

Conclusions 

In this study, we explored SIC predictions of several classes of interactive parallel 

models: models with either discrete or continuous activation states, where the locus of interaction 
                                                 
8 It is important to note that the conclusions one would make from this tree are based on the true SIC(t) and C(t) 
functions.  In practice one must always estimate these functions from data and thus are subject to sampling error.  
The fact that each branch of the tree depends on multiple decisions compounds the effect of that error.  Furthermore, 
while statistical tests are available for the SIC (Houpt & Townsend, 2010), bootstrapping is necessary for testing the 
C(t). 



Nice Guys Finish Fast 29 

can be either pre-accumulation or post-accumulation. For each class, we simulated facilitatory 

and inhibitory models with OR (inclusive disjunctive) and AND (conjunctive) stopping rules, 

and generated SIC functions for various levels of cross-channel interactions.  

The SIC as a tool for identifying the architecture of underlying processing systems was 

first introduced by Townsend and Nozawa (1995). These researchers showed that different 

processing models predict distinctive shapes of the SIC function. Thus, by estimating the SIC 

directly from data, one can rule out models that fail to predict the observed shape of the contrast 

function. Townsend and Nozawa limited their exploration to processing models with 

independent channels. Townsend and Wenger (2004b) studied parallel models with interactions, 

but focused solely on workload capacity using linear dynamic systems. In this paper we provided 

a theoretically important generalization of the results of Townsend and colleagues by 

investigating the SIC predictions of parallel models with cross-channel interaction.  

Two important types of parallel models were scrutinized in this paper: discrete-state and 

continuous-state models. The discrete-state model was constructed as a two channel counting 

model, in which the input to each channel was as series of single counts that arrived 

independently, at random intervals, with a constant rate. Each input count was shared, or sent to 

the other channel, with some fixed probability. The continuous-state model, on the other hand, 

was formulated as a set of linear differential equations with additive noise. There were no 

qualitative differences between the results of the discrete- and continuous-state models. This 

facet is intriguing because it suggests that the feedback mechanism inherent in our stable linear 

systems modeling may not play a major role in predictions for interactive parallel models. 

Using both continuous-state models and discrete-state models, we modeled the effects of 

pre- and post-accumulation interaction between channels on the form of the SIC function. 
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Despite differences in the formulation of the models, their results were very similar as we 

demonstrated in Figure 3. 

 Although we explored a wide range of parallel interactive models, they predicted a 

limited range of SIC forms, thereby allowing for the falsification of certain model architectures. 

Even in the case where different models predict identical SICs, Systems Factorial Technology 

still provides powerful non-parametric methods for distinguishing among the models. Every pair 

of facilitatory and inhibitory models that share the same SIC, for instance, can be distinguished 

by analyzing their capacity predictions. Therefore, combined analysis of empirical SICs and 

capacity coefficients appears highly promising as a useful experimental tool in model diagnosis.  

The inferential process is demonstrated in the decision tree shown in Figure 4.  

Under the assumption of selective influence, systems factorial technology has previously 

shown itself to be a formidable modeling technique. It relies on analytically proven theorems 

without making parametric assumptions about the underlying distributions responsible for 

generating the data. As such, its predictions are general and hold for any type of processing 

model with a particular architecture and stopping rule, regardless of the exact way in which 

individual channels of the model accumulate evidence over time. For example, a two-channel 

parallel-independent model always predicts a completely positive SIC, whether the accumulation 

of evidence towards decision within a channel is based on a diffusion process (e.g., Ratcliff, 

1978) or a Poisson process (e.g., Smith & Van Zandt, 2002).  

As observed in the Introduction, an earlier theoretical investigation of the consequences 

of the failure of selective influence on mean interaction contrast led to serious damage to model 

tests (Townsend & Thomas, 1994). However, that effort, in addition to the confinement to mean 
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interaction contrast, was based on interaction among the actual processing times rather than 

through state space interactions as we employed above. The theoretical results found 

that, given no restraints at all on interactive mechanisms that destroy selective influence, mean 

interaction contrasts can exhibit over additivity, under additivity, or simple additivity. In fact, 

whether the stochastic interaction among times was positive (e.g., long times in one channel 

associated with long times in another) or negative (long times in one channel associated with 

short channels in another), made no difference -- each variety could produce the various mean 

interaction contrast signs. 

The present approach is unable to assess the SIC predictions of all possible models which 

violate selective influence. However, our results do suggest optimism that broad, but principled 

models of processing, founded on general and reasonable state spaces, may make rather generic 

and canonical predictions. In fact, they indicate that distinct types of interactive-parallel models 

produce typical signatures (or a limited range of signatures), even when selective influence is 

violated in specified ways. And, when the empirical survivor contrast and capacity coefficient 

functions are different from the predicted signatures, certain classes of models that fail to 

produce the observed outcome can be safely rejected. 
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Appendix A: Formal Description of Discrete-State Models 

 

In this appendix we present the formal description of the discrete-state models discussed 

in the text. Processing channels in these models simultaneously (i.e., in parallel) accumulate 

evidence, in form of counts, toward some threshold. Via cross-channel interaction channels can 

also receive counts from each other. Therefore, counts in each channel could be from two 

sources: (i) Within channel counts, based on the channel’s response to some external stimulus or 

stimulus attribute, that represent the channel independent process of accumulating evidence from 

the environment. (ii) Shared counts, received from the other channel, that represent the 

interaction across channels.  

Modeling Within- and Between-Channel Counts 

Within channel counts. In both pre- and post- accumulator models, the input counts are 

assumed to arrive independently and at a constant rate until the channel stops processing. The 

number of counts accumulated within each channel up to time t , is denoted by )(1 tu  and )(2 tu  

for channels 1 and 2 respectively. To model the difference between high and low salience 

conditions, the rate for the high condition (H), and thus the probability of accumulating a count 

in an interval, was set to be higher than the rate for the low condition (L), implying a shorter 

processing time for the H condition.  For the results reported in the main text, the high rate was 

set to .05 and the low rate was set to .03 for both channels (but see Appendix C where we report 

results with a wide range of parameter values). 

Between channel counts. The level of interaction between channels is set by the 

probability 12p  of channel 1 receiving a count from channel 2 and probability 21p  of channel 2 

receiving a count from channel 1. In the pre-accumulator models, each new within-channel count 
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is shared with a certain probability. We use )(tkij  to denote the number of counts that channel i  

received from channel j  by time t .   

In the post-accumulator models, the sharing follows a pure birth process, in which 

channel i  receives counts from channel j  according to an exponential distribution with rate 

µµ ijjij ptxt )()( = .  )(tx j  is the total activation (shared and within channel) in channel j  at time 

t . ijp  is a probability that is varied to model degrees of interaction.  The variable µ , with no 

subscripts, is a constant rate that is independent of the degree of interaction or direction of 

sharing. In general the sharing rate can be set to any positive number and it does not affect the 

qualitative aspects of the SIC.  For the purposes of this paper, we set it to be in a similar range as 

the input rate. 

Whether count sharing (cross-channel interaction) happens before or after the 

accumulation of counts, in the facilitatory models the shared count is added to the total activation 

of the receiving channel so the total activation at time t  is the sum of the accumulated within-

channel counts and the accumulated shared counts, )()()( tktutx ijii += . In the inhibitory 

models, the shared counts are subtracted rather than added. The total activation )(txi  is then the 

total accumulated within-channel counts )(tui  minus the shared counts, 

( ) ( ) ( ) }'0;)'(0|'{  ;'
'

tttxttktutx ii
t

ijii ≤≤<<=Ω∆−= ∑
Ω∈

γ , where Ω  ranges over positive times 

for which ix is above zero and below criterion (if activation is zero, or if that channel had 

reached its criterion, then the shared counts bear no effect). 

A channel completes processing when the total activation reaches threshold iγ .  If the 

system is an OR system, then the system also finishes processing at this point.  If it is an AND 
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system, then the other channel will continue unaffected by the completed channel. A channel is 

assumed to have between 0 and iγ  counts, so the model is defined over the 21 γγ ×  state space.  

The cumulative distribution function for the AND rule is given by 

} AND {)( 21AND tTtTPtRTP ≤≤=≤ , and the distribution for the OR rule is given by 

} OR {)( 21OR tTtTPtRTP ≤≤=≤ , where 1T  and 2T  are the random variables for processing 

times on the two channels.  The probability that a channel finished processing at or before time t 

is equivalent to the probability that the total number of counts in the channel is at or above its 

criterion. Consequently, the cumulative distribution function for the AND rule can also be 

written as })( AND )({)( 2211AND γγ ≥≥=≤ tXtXPtRTP and the distribution for the OR rule is 

given by })( OR )({)( 2211OR γγ ≥≥=≤ tXtXPtRTP . 

The above discrete-state models are all Markov processes and thus can be analyzed using 

the general tools associated with that class of models. In particular, we can use a matrix, R , of 

the transition rates to specify the model and to calculate the distribution of completion times.  

Formally, the transition rate matrix is defined as follows.  Suppose iv  is the rate at which the 

state changes from state i , and ijq  is the transition rate from state i  to state j .9  Then the entries 

of the transition rate matrix are given by 




=−
≠

=
jiv
jiq

r
i

ij
ij  if

 if
.  If { }iXjtXPtPij === )0(|)()( , 

then the matrix of probabilities with entries ijP can be approximated by the equation, 

nntt )/()( RIP +≈          (A1) 

for large n (Ross, 1996, p. 250).  The only difference between the models is in the specification 

of the transition rate matrix. 

                                                 
9 Note that here  i  and j refer to the state, not to indicate specific channels as is the case above. 
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Facilitatory Models 

Facilitatory exhaustive (AND) model. Figure A1 illustrates the state space for such 

model. The state of the model in the figure is represented by the number of counts on channel 1 

(y axis) and the number of counts on channel 2 (x axis). The model starts without any counts, at 

[0, 0], and gradually accumulates evidence towards the thresholds 1γ and 2γ , thus moving in the 

state space up and right towards the bounds. At each point of time, the state of the model must 

fall within one of the five areas in the figure. At any given time t , we are only concerned with 

the probability that the model has completed, not the exact manner in which it completed.  

Hence, we can partition the sample space based on the within channel counts, then determine the 

probability that the model has completed within that partition.  This partition is depicted in 

Figure A1.  A pre-accumulator model cannot complete processing if its state is within area 5 of 

Figure A1, as there are not enough counts to reach either criterion. However, there is positive 

probability of completion for the facilitatory AND model in each of the other partitions, areas 1 

through 4 in Figure A1.  [Figure A1 here] 

 

Figure A1. The state space of within-channel activation of the discrete state, pre-accumulator 
models.  The y axis corresponds to the level of within-channel activation in channel 1 while the x 
axis corresponds to channel 2.  Area 1 represents the case in which Facilitatory AND and OR 
models have completed processing.  In areas 2 and 3, Facilitatory OR models have terminated 
and Facilitatory AND models may be finished if there is enough between-channel sharing.  In 
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area 4, Facilitatory AND and OR models may finish, but only with enough sharing. In area 5, the 
pre-accumulator models cannot finish processing, regardless of the amount of sharing. 

 

 To use equation A1 for this model, the following equations give the entries for transition 

rate matrix:  
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 In the post-accumulator model, any of the counts acquired so far may be shared. Hence, 

the rate of transition increases as the number of counts increase.  The corresponding entries in 

transition rate matrix are: 
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Facilitatory first-terminating (OR) model. In a first-terminating model, only one channel 

must reach criterion ( 1121 γ=+ ku or 2212 γ=+ ku ).  Equivalently, this can be stated as the 

complement of ‘both channels are less than criterion’.  
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 The transition rate matrices representing the pre-and post-accumulator, facilitatory OR 

models are quite close to the corresponding matrices for the facilitatory AND models. The only 

difference is that once either one of the channels has reached its criterion, the transition rate is 

zero.  For the pre-accumulator model: 
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For the post-accumulator model: 
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Inhibitory Models  

In an inhibitory model the shared counts are subtracted from the total activation of the 

receiving channel. An additional assumption of the inhibitory models is that the total activation 

of a channel cannot go below zero (cf. Usher & McClelland, 2001). Such an assumption is not 

necessary in facilitatory models, because channels’ activation cannot be negative. Since the 

shared counts do not always contribute to the total activation the inhibitory model cannot be 

stated with the relatively simple equations of the pre-accumulator facilitatory model.  Instead we 

use a random walk process to describe the inhibitory model.  We begin by illustrating the state 

space and possible processing steps in such models (Figure A2).  In keeping with the intended 

Poisson nature of the model, we treat the probability of two counts occurring in the same 

miniscule time increment as zero.   

Panel A in Figure A2 depicts the initial state of the model and the possible transitions 

from that state.  Initially, there is no activation in either channel so the model starts at [0, 0].  

When a channel gains a count, it may or may not share that count.  We assume that a channel 
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cannot have negative activation, so if a channel with zero counts receives a shared count, the 

shared count will have no effect. Therefore, at [0, 0] a count that is added to one channel is not 

subtracted from its counterpart, and the new state of the model is [1, 0], or [0, 1].  

If both channels have at least one count, but neither channel has completed processing, 

there exist other possible transitions, as depicted in Figure A2 -- Panel B. The model can stay in 

the same state, both channels could increase, or one channel could increase while the other 

remains constant.  [Figure A2 here] 

A. B. C. D.  

 
Figure A2. The state space of total channel activation of inhibitory discrete-state models.  The y 
axis corresponds to the level of activation in channel 1 and the x axis corresponds to channel 2.  
If the model is in the state marked by the black dot, then the possible states in the next time step 
are depicted by all of the dots, including the possibility of staying in the current state.  Panel A 
shows the initial state of the model.  Panel B shows an example of a state in which one channel 
has acquired some activation while the other has none.  Panel C shows an example of a state in 
which both channels have some activation, but neither has reached its criterion.  Panel D shows 
an example of a state in which one channel has reached criterion but the other has not.  If the 
model is an OR model, processing has terminated.  If it is an AND model, then only the 
activation in the channel that is still below criterion can change. 

 

It is impossible for both channels to lose a count simultaneously. It is also impossible for 

one channel to lose a count while the other stays the same. This is because for a channel to lose a 

count, it must receive a shared count from the other channel and not gain a within-channel count.  

Since the first channel does not gain a within-channel count, it cannot share.  However, the other 

channel must gain a within-channel count to share.  This other channel cannot have received a 
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shared count from the first channel, meaning that its total activation must also increase. Thus, for 

one channel to decrease, the other must increase. 

Once a channel reaches criterion, the behavior of the first-terminating and the exhaustive 

models diverges.  The first-terminating model finishes processing at this point (so the model will 

not transition to any other state).  The exhaustive model must continue processing until both 

channels reach criterion.  After one channel completes processing it can no longer affect 

processing in the other channel.  The unfinished channel will continue accumulating counts 

independently until it reaches its criterion.  When both channels reach criteria the model reaches 

its final state (and processing is completed). 

We are now in a position to specify the transition rate matrix for these models.  In most 

cases, the transition rate depends on the current state.  Cases where at least one channel is zero or 

at criterion, pictured in Figure A2 – Panels A, B and D, are dealt with first, then we specify 

transition rates from states in which both channels have at least one count and neither channel 

has reached criterion.  These are the states exemplified in Figure A2 -- Panel C.  As we described 

above, the model can transition to a state where only a single channel increased while the other 

channel either stayed the same or decreased, or to the same state in which both channels have the 

same amount of activation. 

Inhibitory exhaustive (AND) model. In the AND model, the unfinished channel will 

continue independently until it finishes. 

For one channel to increase while the other decreases, the first channel must gain a count, 

then share it. 
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For the total activation in one channel to increase while the other remains the same, the 

first channel must obtain a within-channel count but not share it. 
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If neither channel gains a count then no counts had been shared and the activation simply 

stays the same. 
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The post accumulator models are similar to facilitatory post-accumulator models.  The 

diagonal entries to the transition rate matrix are the same. 
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The difference is that when a count is shared, the receiving channel decreases. Hence, the 

transition rates for gaining a count in a channel are, 
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The transition rates for losing a count are, 
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Inhibitory first-terminating (OR) model. The transition probabilities listed up to this point 

apply to both the OR and AND models.  As discussed earlier, the two models differ once one of 

the channels finishes.  In this case, the OR model does not change states.  In all other cases, the 

behavior of the two models is identical. 

For one channel to increase while the other decreases, the first channel must gain a count, 

then share it. 
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For the total activation in one channel to increase while the other remains the same, the 

first channel must obtain a within-channel count but not share it. 
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If neither channel gains a count then no counts had been shared and the activation simply 

stays the same. 
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Like the post-accumulator AND models, the post-accumulator inhibitory OR models are 

quite similar to the post- accumulator facilitatory OR models, 
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Appendix B: Formal Description of Continuous-State Models 

 

In this appendix we present the formal description of the continuous-state models 

discussed in the text. Like the discrete-state models in Appendix A, we assume two parallel 

processing channels, but now we allow the state to be any positive real number, as opposed to 

just integer value. The total activation in each channel is represented by )(txi , although to 

conform to the standard presentation of linear dynamic systems (e.g., Townsend & Wenger, 

2004b), we use vector and matrix notation, i.e. 







=

)(
)(

)(
2

1

tx
tx

tx .  Each channel has some input, 
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tu , corresponding to the within-channel counts in the discrete-state model. 

To represent cross-channel interactions, we use a matrix of coefficients indicating the 

values of the activation weights.  Following Ashby’s model for stochastic general recognition 

theory (Ashby, 1989), we use 







=

2221

1211

bb
bb

B for pre-accumulator interactions, and 









=

2221

1211

aa
aa

A for post-accumulator interactions.  The off diagonal coefficients represent the 

amount of between-channel cross talk, or information sharing, so 12a  determines the amount of 

cross-talk received by channel 1 from channel 2 and 21a  determines the amount of cross-talk 

received channel 2 from channel 1. For those unfamiliar with linear dynamic system notation, it 

may seem odd to use 12a  for the sharing from channel 2 to channel 1 rather than vice versa. In 

keeping with the standard notation of this class of models, we use the subscripts to denote the 

row and column of the matrix A .  
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By setting the off diagonal coefficients of matrix A  to zero, cross-channel sharing is 

completely eliminated, thereby making the model equivalent to an independent-parallel model. 

Activation in the model is then solely dependent on the diagonal elements, representing within-

channel contribution. The diagonal elements 11b  and 22b  are parameters denoting gain or loss 

applied to the within channel input.  Since changing the diagonal elements of B  is equivalent to 

rescaling the inputs, we fixed them to 1, 12211 == bb . The diagonal elements 11a  and 22a  are 

parameters denoting the feedback rate for a particular channel.  As we shall see shortly, these 

values can be used to ensure that the system is stable. Townsend and Wenger (2004b) used 

parameter values that maintained stability in the system, a property that is often assumed for 

natural systems (cf. Usher & McClelland 2001). 

Deterministic Pre-Accumulator Model 

The two-channel pre-accumulator interactive parallel model, with no post-accumulator 

interaction, is given by: 
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We refer to the above version of the model as deterministic, because it has no source of 

noise or variability. We shall shortly present the stochastic version of the model, which includes 

a noise term. 

The magnitude of the interaction parameters (off diagonal elements of B ) was varied 

between 0 and 1 to represent the range between complete independence and total information 

sharing.  Similar to our explorations with the discrete-state models, we set the interaction to be 

symmetric so that 2112 bb = . Assuming a constant input, the solution to this differential equation 

is 
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Deterministic Post-Accumulator Model 

The (deterministic) two-channel post-accumulator interactive parallel model is given by: 
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 In accordance with Townsend and Wenger (2004b), we further simplified the model with 

the assumption that the activation rates within each channel are equal, 2211 aa = , and as above, 

cross-channel interaction coefficients are equal, 2112 aa = . Furthermore, we assumed that the 

input to each channels is constant (for 0>t , 2211 )(;)( utuutu == ), making the system time 

invariant. 

In this case there exists a closed form solution that describes the activation level in each 

of the channels at time 0≥t :  
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 The channel’s activation is an exponential expression, meaning that if the sum 1211 aa +  

or 1211 aa −  is positive, the activation increases without bound. To stabilize the system, we 

set 02211 <= aa ; and 22112112 aaaa =<=  to prevent the sum from being positive.   

Stochastic Pre- and Post-Accumulator Models 

To make the model stochastic, we added a two dimensional Brownian motion process, 

)(tW , to the input. The added noise process is independently and identically distributed over 
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time and across channels. The differential equation that describes channel activation in a 

stochastic model with two parallel channels that interact pre-accumulation is: 
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When the interaction occurs post-accumulation, the equation is: 
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By adding the white noise processes, the derivative can no longer be interpreted as a 

standard derivative. This follows from the fact that Brownian motion, and hence the processes 

described in Equations B5 and B6 are nowhere differentiable. Instead, these equations may be 

interpreted as solutions to an Itô integral. In practice, we did not calculate exact distributions 

from these equations; we only simulated results using a discrete-time approximation. 

As in the discrete-state models, we allowed the interaction parameters to be either 

positive (facilitation) or negative (inhibition), and manipulated the magnitude of the cross-

channel interaction. The actual interaction parameters for the post-accumulator, facilitatory 

models were set to be 0 (independent channels), 1.2, 2.4 and 3.6 and 4.8, with the stabilizing 

parameter set to -10. For simplicity, both the interaction parameters and stabilizing parameters 

were set to be equal across channels ( 2112 aa = ; 2211 aa = ). The particular range of parameter 

values was chosen to ensure the stability of the model.  As stated above, the cross channel 

interaction in the pre-accumulator models varied in magnitude from 0 to 1, with positive values 

for facilitatory values and negative values for inhibitory models. 
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Appendix C: Simulation results from a wide range of parameter values  

 

 We have explored SIC predictions of parallel-interactive models over a wide range of 

parameter values. In the main text and in Figure 3 we described the SIC forms that were most 

prevalent in our simulation results (we report below, in Table C2, the exact frequencies of these 

SIC patterns, as well as frequencies of other patterns). These forms, which we refer to as the 

canonical SIC forms, were replicated with many parameter values, as long as the system was 

roughly symmetrical (i.e., the two channels had roughly the same rates, roughly the same 

criterion values, and roughly the same level of sharing). When evidence-accumulation processes 

in the channels were highly asymmetrical (we shall be more precise when we refer to Table C2), 

other SIC patterns emerged. In Table C1 we present the parameters and parameter values tested 

with the discrete-state models. Results from continuous-state models were qualitatively similar. 

The results reported in the main text and illustrated in Figure 3 are based on a subset of this 

range, where channels were symmetric in rate, criterion, and sharing (namely, high rate was set 

to .05 and low rate was set to .03, for both channels; criterion was 5 for both channels; 

probability of cross-channel interaction varied, but was always equal for both channels).  [Table 

C1 here] 

 

Table C1: Parameters and parameter rates used in simulations of the discrete-state models.  

Parameter Values tested 

hv1 : High rate, channel 1 0.05 

hv2 : High rate, channel 2 0.02, 0.03, 0.04, 0.05 
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lv1 : Low rate, channel 1 0.01, 0.02, 0.03, 0.04 

lv2 : Low rate, channel 2 0.01, 0.02, 0.03, 0.04 (and smaller 

than hv2 ) 

1γ : Criterion, channel 1 5, 10, 15 

2γ : Criterion, channel 2 5, 10, 15 

12p : Probability of sharing received by channel 1 from 2 0, 0.2, 0.4, 0.6, 0.8, 1 

21p : Probability of sharing received by channel 2 from 1 0, 0.2, 0.4, 0.6, 0.8, 1 

 

In Table C2 we summarize results from simulating the full parameter range. On each 

simulation we varied the values of each parameter independently of the other parameters, and 

tested the form of the SIC function for this combination of parameters. We repeated the 

simulations for Facilitatory AND, Facilitatory OR, Inhibitory AND, and Inhibitory OR models. 

Overall, we tested 12,960 parameter combinations for each model, amounting to a total of 51,840 

simulated SIC functions. In effect, this number was doubled, since we simulated models with 

both pre- and post-accumulator interactions. The results from the two model types were 

generally similar, but for completeness we report both sets, on separate columns.  

For each model we first report the proportion of cases (each case is a different 

combination of parameters), in which the SIC function was similar in form to one of the 

canonical SIC signatures of this model, presented in Figure 3. Then, for each model, we list the 

other, non-canonical SIC forms and the proportion of times each of these forms was observed in 

our simulations. For brevity, when describing the non-canonical forms we use N and P to 

indicate whether the SIC function was negative or positive. So, for example, PN means that the 
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SIC function started positive and then became negative for larger t, and PNP means that the 

function started positive, became negative, and then became positive again for large t.  

We discuss the simulation results for the various model presented in Table C2 by order of 

difficulty for interpretation, from easy to more difficult, and not necessarily by order of 

presentation. A scrutiny of the table reveals that for a wide range of parameter values and 

regardless of the locus of interaction, facilitatory OR and inhibitory AND models consistently 

predict SIC signatures similar to the canonical SIC forms depicted in Figure 3. The pre-

accumulator inhibitory AND model predicted a non-canonical, SIC=NPN with as little as 0.2% 

of the parameter settings.  In each of the cases that predict this form, both the probability of 

sharing and the criteria were quite high:  .20;6.1 212112 ≥+≥+ γγpp  

The pre-accumulator facilitatory AND model predicts canonical SIC forms on more than 

95% of the cases, and predicts a non-canonical SIC form, SIC(t)=0 for all t, only when one 

channel is faster (i.e., has a faster rate or lower criterion) than the other and the probability of 

sharing from the faster channel to the other is null whereas the other, slower channel shares with 

some nonzero probability.  

The post-accumulator facilitatory AND model exhibits more variability in its predicted 

SIC forms. In nearly 19% of cases the SIC had an NPN form. These cases all had some 

asymmetry in the parameters, however asymmetry in the post-accumulator facilitatotry AND 

models did not necessarily imply the NPN form. When the expected completion time of one 

channel was much faster than that of the other, SIC=PN form was also occasionally observed.  

SIC(t)=0 for all t occurred in similar conditions to the pre-accumulator facilitatory AND model, 

but was not as common: 0.5% of the parameter settings. 
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Finally, the predictions of the pre- and post-accumulator inhibitory OR models are well 

within the range of the canonical SIC forms for more than 80% of the cases we have 

investigated. These models, like the post-accumulator facilitatory AND model, predict the non-

canonical SIC=PN form (positive for small t, then turning negative for larger t) when strong 

asymmetry is induced: either the expected completion time of one channel is much faster than 

the other, or the probability of sharing from one channel is relatively small whereas the 

probability of sharing from the other channel is high. Additionally, both types of the inhibitory 

OR models very rarely produce SIC(t)=0 for all t.  Much like the facilitatory AND models, these 

cases only occurred when the probability of sharing from one channel to the other was zero while 

sharing in the other direction was non-zero.  Importantly, the inhibitory OR models are the only 

models we have tested that predict a non-canonical SIC form (namely, PNP – positive for small 

t, then turning negative, and finally positive for large t) without postulating channel asymmetry. 

Luckily, this predicted non-canonical form – PNP – is unique to that model as far as our tests 

show. That is, observing a PNP signature is a useful diagnostic tool as it rules out the other 

models (and in any event appears on a small subset, 11% and 13%, of the pre- and post-

accumulator simulations, respectively). 

In conclusion, repeating the simulations with a wide range of parameter values resulted in 

only few qualitative changes in the form of the SIC function compared to the canonical forms 

reported in the main text and in Figure 3. Allowing the rates, criterion values, and probabilities 

of sharing to vary independently between channels generally resulted in canonical SIC forms. In 

few cases, for specific parameter combinations, strong asymmetry across channels (different 

rates, criteria, and/or level of cross-channel sharing) may result in non-canonical forms. These 

non-canonical forms are unique in the sense that they are not predicted by any of the independent 
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models, nor by any of the symmetric interactive-parallel models tested here (for example, no 

independent model predicts SIC = PN, that is, SIC that starts positive and becomes negative for 

large t). Therefore, these SIC signatures are easy to identify and are not likely to lead to a false 

identification of models’ architecture. [Table C2 here] 

 

Table C2: Simulation results from four types of discrete-state models with pre- and post-
accumulator sharing, given various combinations of parameter values. The parameter values 
used for these simulations are listed in Table C1. PN: Positive then negative. NPN: negative, 
then positive, then negative (see text for more details). 

Model Pre-Accumulator Sharing Post-Accumulator Sharing 

Facilitatory AND Canonical form: 95.1% 

Other forms:  

SIC = 0 for all t: 4.9% 

Canonical form: 76.8% 

Other forms:  

SIC = NPN: 18.9% 

SIC = PN: 3.9% 

SIC = 0 for all t: 0.5% 

Facilitatory OR Canonical Form: 100.0% Canonical Form: 100.0% 

Inhibitory AND Canonical Form: 99.8% 

Other forms:  

SIC = NPN: 0.2% 

Canonical Form: 100.0% 

Inhibitory OR Canonical Form: 80.9% 

Other forms: 

SIC = PNP: 11.3% 

SIC = PN: 7.7%  

SIC = 0 for all t: 0.1% 

Canonical Form: 83.6% 

Other forms: 

SIC = PNP: 13.3% 

SIC = PN: 3.1% 

SIC = 0 for all t: 0.1% 
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